The “deduction” approach: A non-invasive method for estimating secondary production of earthworm communities

Nikita S. Eriksen-Hamel, Joann K. Whalen*

Department of Natural Resource Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada

Abstract

Secondary production is an important parameter for the study of population dynamics and energy flow through animal communities. Secondary production of earthworm communities has been determined with the size-frequency and instantaneous growth rate methods, whereby earthworm populations are repeatedly sampled at regular intervals and the change in biomass of cohorts or individuals between sampling dates is determined. The major disadvantage of repeated sampling is that it disturbs the soil and permanently removes earthworms from the study area. The “deduction” approach is a theoretical model that partitions individuals into defined pools and makes assumptions about the growth, recruitment and mortality of each pool. In 2004 and 2005, earthworms were added to undisturbed field enclosures and the “deduction” approach was used to estimate secondary production of the indigenous and added earthworm populations during the crop growing period (17–18 weeks) in each year. Secondary production estimates made by the “deduction” approach were similar to estimates from direct earthworm sampling in temperate agroecosystems. The “deduction” approach is an indirect method that estimates population dynamics and secondary production, and is appropriate for manipulation experiments where removal of organisms and physical disturbance of the habitat by repeated sampling could bias results.

1. Introduction

Secondary production describes the growth, mortality and recruitment of individuals in a population and is often used to estimate the energy flow in aquatic food webs (Benke, 1984). Both direct and indirect methods of estimating secondary production have been developed. Calculations of secondary production using direct methods such as the cohort method (Crisp, 1971), size-frequency method (Hynes, 1961), and the instantaneous growth rate method (Romanovsky and Polishchuk, 1982) generally yield comparable results (Medernach and Gremaire, 1999; Sardà et al., 2000). Indirect methods for estimating secondary production are based on empirical relationships between body size and production, but do not give similar estimates of secondary production unless a large population size and a broad range of environmental conditions are used to develop the relationships (Sardà et al., 2000).

Secondary production is also relevant to terrestrial organisms such as earthworms. Due to their key influence on soil organic matter decomposition, nutrient cycling and primary production (Fragoso et al., 1997; Lavelle et al., 1997), many researchers have attempted to quantify energy and nitrogen flux through earthworm communities from secondary production estimates (Parmelee and Crossley, 1988; Whalen and Parmelee, 2000). Secondary production represents about 8–19% of the N cycled by earthworm communities, which is estimated at between 7 and 363 kg N ha⁻¹ year⁻¹ (Parmelee and Crossley, 1988; Marinissen and de Ruiter, 1993; Curry et al., 1995; Whalen and Parmelee, 2000). This is an important contribution to N cycling, considering that the annual N demand of field crops (wheat, maize, etc.) often exceeds 100 kg N ha⁻¹.

The direct methods of calculating secondary production in earthworm communities involve sampling earthworm populations at regular intervals throughout the frost-free periods of the year and inferring the change in earthworm biomass between sampling dates (Satchell, 1963; Boström, 1988; Parmelee and Crossley, 1988). There is considerable variation in secondary production estimates, even at a single field site, due to difficulties in gauging the age of individuals, the lack of cohort-specific developmental phases and the heterogeneous distribution of naturally-occurring communities (Rossi et al., 1997; Whalen and Parmelee, 2000). Earthworm manipulation experiments permit researchers to add individuals of known age and biomass to a designated area (enclosure), and
determine their impact on soil properties and plant growth during a period of time (Eriksen-Hamel and Whalen, 2007a). Intact laboratory mesocosms and undisturbed field enclosures favor the survival and growth of earthworms added in manipulation experiments, but the major drawback is that we cannot assess the earthworm population (cocoons, juveniles and adults) already inhabiting the experimental unit. Another difficulty is that regular sampling of earthworm populations in the mesocosm or enclosure is not possible because it would disrupt the soil habitat and remove earthworms from the experiment. Since direct methods of calculating secondary production cannot be used in earthworm manipulation experiments, we developed the “deduction” approach, which permits researchers to estimate the population dynamics of earthworms and other cryptic animals without repeated invasive sampling. The earthworm population (number of individuals and biomass) is measured only once, at the end of the experiment, and the “deduction” approach is used to infer the initial biomass. Then, secondary production is calculated as the difference between the initial and final biomass minus estimated mortality and recruitment. The “deduction” approach does not contradict direct methods of estimating secondary production that are based on stochastic, stage-based Leslie matrix population models (Tondoh, 1998; Potter et al., 1990). Native earthworms collected from the surrounding field were added to the enclosures on June 1, 2004 and on June 6, 2005, and remained in the enclosures for about 17–18 weeks. The seven treatments included three earthworm populations as Aporrectodea caliginosa only (Ac), Lumbricus terrestris only (Lt), and a combined A. caliginosa and L. terrestris treatment (AcLt), at either the background population level (1 ×) or double the background population level (2 ×), and a control treatment (Control) (Table 1). Earthworms were sampled from a soil pit (50 × 30 cm to a depth of 20 cm) dug in the middle of each enclosure on September 30, 2004 and September 28, 2005. Formalin extraction (Raw, 1959) was used to collect earthworms from lower depths beneath the pit. Earthworm numbers, age-classes, formalin-preserved biomass and ash-free dry weight (AFDW) of collected earthworms were later recorded in the lab. Ash-free dry weights were determined by placing dried (90 °C for 24 h) earthworms in a muffle furnace at 500 °C for 4 h. Sexually mature individuals were identified to the species level using the key provided by Reynolds (1977). The number and biomass of earthworms added in each treatment in the spring and collected in the autumn are provided in Table 1. Further details of the experimental design, description of soils, and methods of plant and soil sampling and analysis are described in Eriksen-Hamel and Whalen (2007a).

2. Materials and methods

2.1. Description of field site and experiment design

A field experiment was designed to evaluate the effects of controlled earthworm populations on soil properties and crop yield in field enclosures. It was conducted from May 2004 to September 2005 on the Macdonald Campus Research Farm, McGill University, Quebec, Canada (45°25’ N, 73°56’ W). In May 2004, rectangular sheet metal field enclosures, measuring 2.4 m × 1.2 m (2.9 m²), were buried to a depth of 0.30–0.40 m leaving 0.1 m high enclosures above soil. The corners and top edges of the enclosures were bent at right angles to ensure a tight fit between pieces and minimize earthworms escaping from the enclosures (Eriksen-Hamel and Whalen, 2007a). Seven enclosures were replicated in four blocks, for a total of 28 experimental units. During the months of May 2004 and May 2005, carbaryl pesticide (Sevin (®)) was applied four to five times to each enclosure (total application of 220 kg a.i. ha⁻¹ year⁻¹) to reduce earthworm populations. The pesticide was applied according to recommended applications rates made by Potter et al. (1990). The number of days that earthworms are active throughout the year significantly impacts the estimates of secondary production. Based on weekly soil temperature and moisture measurements from each enclosure (Fig. 1), the growth rates of A. caliginosa in soil from the site (Eriksen-Hamel and Whalen, 2006) and casting activity of earthworms in enclosures (Perreault et al., 2007), we determined that earthworm growth and activity ceased when soil temperatures exceeded 22 °C and soil moisture was below 20% WFPS. Thus, earthworm activity was positive (+) at soil temperatures <22 °C and soil moisture >20% WFPS, while neutral (0) activity occurred at these values and negative (−) activity occurred following day.

Table 1

<table>
<thead>
<tr>
<th>Earthworm Treatment</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthworms added</td>
<td>Ind. m⁻²</td>
<td>g fw m⁻²</td>
</tr>
<tr>
<td>A (Ac)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lt (L)</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>AcLt</td>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td>AcLt</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>AcLt</td>
<td>30</td>
<td>67</td>
</tr>
<tr>
<td>AcLt</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>AcLt</td>
<td>130</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatmentfinal</th>
<th>g fw m⁻² (±S.E.)</th>
<th>g fw m⁻² (±S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Ac)</td>
<td>25 ± 7.5</td>
<td>23 ± 5.4</td>
</tr>
<tr>
<td>Lt (L)</td>
<td>56 ± 15</td>
<td>34 ± 7.1</td>
</tr>
<tr>
<td>AcLt</td>
<td>86 ± 22</td>
<td>25 ± 8.4</td>
</tr>
<tr>
<td>AcLt</td>
<td>55 ± 9.2</td>
<td>24 ± 11</td>
</tr>
<tr>
<td>AcLt</td>
<td>77 ± 12</td>
<td>33 ± 10</td>
</tr>
<tr>
<td>AcLt</td>
<td>86 ± 25</td>
<td>43 ± 11</td>
</tr>
<tr>
<td>AcLt</td>
<td>92 ± 8.7</td>
<td>44 ± 20</td>
</tr>
</tbody>
</table>

when the critical temperature and moisture levels were exceeded (Fig. 1). Although earthworms were expected to be inactive on days with negative activity, we assumed that earthworms could possibly be active on days with neutral activity. We estimated the number of days with positive earthworm activity was 77 (±14) in 2004 and 49 (±14) in 2005, where the uncertainty associated with these values is the number of days with neutral activity (14 d) in each year (Fig. 1, Table 2).

2.3. Assumptions about earthworm growth and mortality to estimate earthworm secondary production

Earthworm numbers and biomass in each enclosure changed between the date of earthworm addition (early June) and the final population assessment following crop harvest (Table 1). Most lateral movement by earthworms occurs in the 0–20 cm depth (Francis et al., 2001; Bastardie et al., 2003) and since the enclosures extended 30–40 cm deep, we assumed that there was no immigration or emigration from the enclosures. We also assumed that earthworm removal by predation (e.g. birds) was negligible in all enclosures. Bird flocks were observed often on neighboring alfalfa fields, which typically have large earthworm populations, and we presume that foraging success was greater elsewhere than at our field site. Removal of surface residues in the spring and regular weeding probably made field enclosures unattractive for other earthworm predators, as we saw no evidence of voles or snakes in the vicinity of our study site. Therefore, the fluctuations in earthworm populations and biomass were due to recruitment of
hatchlings from cocoons, growth (secondary production) and biomass lost via mortality.

The “deduction” approach involves assigning earthworms to defined pools and deducing the fate of each pool with assumptions about growth, reproduction and mortality (Fig. 2). The earthworm biomass (g fw m⁻²) in the control treatment at the end of the season (Controlfinal) was from earthworms that survived pesticide application (Sᵢ), earthworms that hatched from a cocoon deposited prior to pesticide application (Cᵢ) and the offspring of these earthworms (Rᵢ).

Controlfinal (g fw m⁻²) = Sᵢ + Cᵢ + Rᵢ

To differentiate these pools (Sᵢ, Cᵢ and Rᵢ), we determined the maximum biomass of an earthworm that hatched from a cocoon the day after the last pesticide application. This was based on the number of days with positive earthworm activity (77 d in 2004, 49 d in 2005) and growth curves for each earthworm species obtained from the literature (Table 3). We used growth curves to estimate the growth of newly emerged earthworms because instantaneous growth rates describe the logistic growth of juvenile or adult earthworms and would have underestimated the rapid linear growth of newly emerged earthworms. A newly emerged earthworm of any species could grow to 0.4 g fw during the study period in 2004 and to 0.3 g fw in 2005 (Table 3). Thus, the Sᵢ pool was the sum of the biomass of all individuals weighing more than these values.

The biomass of earthworms in treatment enclosures at the end of the season (Treatmentfinal) was calculated from Eq. (2).

Treatmentfinal (g fw m⁻²) = Controlfinal + Treatmentadded

The assumption was that Controlfinal biomass was representative of earthworms surviving the pesticide application and their offspring in all enclosures; as well A. longa collected from treatment enclosures were allocated to the Controlfinal pool since this species was not added to enclosures. The Treatmentadded pool was the biomass at the end of the season of earthworms added to enclosures (Aᵢ) and their offspring (R₂).

Treatmentadded (g fw m⁻²) = Aᵢ + R₂

Earthworm biomass was partitioned between the Aᵢ and R₂ pools based on the number of days with positive earthworm activity and instantaneous growth rate (IGR) values obtained from the literature (Table 2). The initial biomass (Bᵢ, g fw) of A. caliginosa juveniles added to enclosures (Aᵢ) were 0.31 g ± 0.01 (S.E.) in 2004 and 0.23 g ± 0.01 in 2005, while L. terrestris juveniles weighed 1.5 g ± 0.10 in 2004 and 1.9 g ± 0.11 in 2005. We calculated the final biomass (Bᵢ) for each earthworm species using a logarithmic growth rate equation (Eriksen-Hamel and Whalen, 2006).

Bᵢ (g fw) = Bᵢ₁ × exp[active days (d) × IGR (d⁻¹)]

where IGR is the instantaneous growth rate and active days were the number of days with positive earthworm activity (Table 2). We calculated that A. caliginosa would grow to a minimum biomass of 0.45 g in 2004 and 0.35 g in 2005, while L. terrestris were expected to grow to 1.6 g in 2004 and 2.0 g in 2005. Earthworms weighing more than the minimum biomass were considered in the Aᵢ pool, while earthworms weighing less than this critical level were considered as being recruited from A (R₂) pool.

Earthworm secondary production (P) was biomass accumulated from all pools between earthworm addition and final biomass measurement.

P (g fw m⁻²) = ΔS + ΔA + Cᵢ + R₁ + R₂ + Mᵢ

where ΔS and ΔA is the biomass accumulated in the S and A pools. The difference between initial and final biomass in both the S and A pools was calculated from Eq. (4). Earthworm mortality (Mᵢ) from each enclosure during the study period was the sum of mortality from all pools.

Mᵢ (g fw m⁻²) = Mₛ + Mₐ + Mᵢᵡ + Mᵢᵢδ + Mᵢᵢγ

Mortality of naturally-occurring (Mₛ, Mₐ) and recruited (Mᵢᵡ, Mᵢᵢγ) earthworms was estimated to be 35% of the earthworm biomass in

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active period (non-aestivation)</td>
<td>2004: 77 days</td>
<td>Fig. 1; Eriksen-Hamel and Whalen, 2007</td>
</tr>
<tr>
<td>Mortality during season (Mₛ + Mₐ + Mᵢᵡ + Mᵢᵢγ)</td>
<td>2005: 49 days</td>
<td>35%</td>
</tr>
<tr>
<td>Mortality of added earthworms (Mᵢ)</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Instantaneous growth rate (d⁻¹)</td>
<td>Ac 0.006</td>
<td>Al-Yousef and Shoreit, 1992; Wever et al., 2001; Eriksen-Hamel and Whalen, 2007</td>
</tr>
<tr>
<td></td>
<td>Lt & Al 0.0008</td>
<td>Subler et al., 1997; Boyer et al., 1999; Eriksen-Hamel and Whalen, 2006, 2007</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>Wehlen and Parmlee, 1999; Zwhalen et al., 2003; Eriksen-Hamel and Whalen, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experimental observations, Boström, 1988; Curry et al., 1995</td>
</tr>
</tbody>
</table>

Fig. 2. Flowchart of the earthworm population dynamics in control and treatment enclosures used for the calculation of secondary production using the “deduction” approach.
2.4. Calculation of mean earthworm biomass during the season

The mean biomass (Bmean) of active earthworms in the enclosures during the growing season was calculated by Eqs. (9)–(11):

\[
B_{\text{mean}} \text{ in control enclosures} \left(\text{g AFDW m}^{-2} \right) = \left(S_i + \text{Control}_\text{final} \right)/2, \tag{9}
\]

\[
B_{\text{mean}} \text{ in treatment enclosures} \left(\text{g AFDW m}^{-2} \right) = \left(S_i + A_i + \text{Treatment}_\text{final} \right)/2, \tag{10}
\]

\[
S_i \left(\text{g AFDW m}^{-2} \right) = S_i/e^{\text{active days} \times IGR} \tag{11}
\]

where \(A_i \) is the initial biomass of earthworms added to each treatment at the beginning of the experiment (Table 1), \(S_i \) and \(S_f \) are the initial and final biomass of earthworms surviving pesticide application.

2.5. Comparison of measured vs estimated values of \(A_i \)

We evaluated the assumptions of growth, reproduction and mortality used in the “deduction” approach by comparing the measured biomass of earthworms added to enclosures (\(A_i \)) with the biomass estimated by Eq. (12).

\[
A_i = \text{Treatment}_\text{final} - \text{Control}_\text{final} = R2 - \Delta A + M_{R2} + M_A, \tag{12}
\]

2.6. Statistical analysis

Regression lines of the model estimates were fitted using the PROC REG function and Pearson’s correlation coefficients were obtained using the PROC CORR function of SAS software (SAS Institute, 2001).

3. Results

3.1. Earthworm populations

Only three earthworm species, \(A. \) caliginosa, \(L. \) terrestris and \(A. \) longa, were found in the enclosures. The naturally-occurring population of \(A. \) longa earthworms were about 9% of the total population in 2004 and 2% in 2005. Manipulation of earthworm species was not successful and the proportion of \(A. \) caliginosa and \(L. \) terrestris did not differ between treatments (Eriksen-Hamel and Whalen, 2007a). This partial failure to manipulate the proportion of earthworm species does not inhibit the use of the “deduction” method as we were able to obtain a wide range of earthworm biomass across all enclosures. The final earthworm biomass of the different treatments ranged from 25 to 92 g fw m\(^{-2}\) in 2004 and 23 to 44 g fw m\(^{-2}\) in 2005, suggesting greater survival and growth of earthworms introduced to enclosures during 2004 than 2005 (Table 1). Populations from this particular field site were intensively studied in field surveys, manipulation studies and laboratory experiments (Eriksen-Hamel and Whalen, 2007a,b; Perreault et al., 2007; Speratti and Whalen, 2008). As such, we determined that the earthworm populations within the enclosures were well below the levels at which density-dependent growth constraints were observed.

3.2. Secondary production estimates

The relationships between secondary production and earthworm biomass were significant in both years (Fig. 3). When results from this study were extrapolated for a 35 week growing season and combined with other published data from temperate ecosystems, a strong correlation (\(r = 0.90, p < 0.001 \)) exists between secondary production of Lumbricid earthworms and mean earthworm biomass (Fig. 4). The difference between measured and estimated values of \(A_i \) ranged from 0.1 to 6.5 g fw m\(^{-2}\) for \(A. \) caliginosa and 16 to 28 g fw m\(^{-2}\) for \(L. \) terrestris in 2004, and 0.7 to 17 g fw m\(^{-2}\) for \(A. \) caliginosa and 13 to 24 g fw m\(^{-2}\) for \(L. \) terrestris in 2005.

4. Discussion

4.1. Secondary production estimates

The estimates of secondary production during the 17 week period determined by the “deduction” approach ranged from 3 to

Table 3

Maximum biomass (g fw) of an earthworm that hatched from a cocoon the day after the last pesticide application. Values for each species were obtained from growth curves and growth rates reported in the literature.

<table>
<thead>
<tr>
<th>Earthworm species</th>
<th>2004 (77 days)</th>
<th>2005 (49 days)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A.) caliginosa</td>
<td>Literature: 0.30–0.80</td>
<td>0.20–0.50</td>
<td>Lofs-Holm, 1982; Boström and Lofs-Holm, 1986; Whalen and Parmelee, 1999</td>
</tr>
<tr>
<td>This study: 0.4</td>
<td></td>
<td></td>
<td>Butt, 1991; Whalen and Parmelee, 1999; Lowe and Butt, 2003</td>
</tr>
<tr>
<td>(L.) terrestris</td>
<td>Literature: 0.3–1.2</td>
<td>0.20–0.6</td>
<td>Butt, 1998; Lowe and Butt, 2002; Baker and Whitby, 2003</td>
</tr>
<tr>
<td>This study: 0.4</td>
<td></td>
<td></td>
<td>Speratti and Whalen, 2008</td>
</tr>
<tr>
<td>(A.) longa</td>
<td>Literature: 0.4–1.3</td>
<td>0.30–0.8</td>
<td>Whalen and Parmelee, 2003</td>
</tr>
<tr>
<td>This study: 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17 g AFDW m⁻² in 2004 and from 2 to 11 g AFDW m⁻² in 2005. If we assume that secondary production during the growing season could be extrapolated for the frost-free period of the year from April to November (35 weeks) and presented on an annual basis, then our estimates (4–35 g AFDW m⁻² year⁻¹) are similar to the estimates of 4–32 g AFDW m⁻² year⁻¹ reported in other cold temperate arable agroecosystems and calculated using direct methods (Fig. 4) (Boström, 1988; Curry et al., 1995; Whalen and Parmelee, 2000). The only exception is the high secondary production (47 g AFDW m⁻²) recorded in the study of Parmelee and Crossley (1988) which probably arises from the longer frost-free period (February–November) in Georgia, USA than other studies in temperate regions (Ohio (USA), Sweden and Ireland) that have colder winters and a shorter frost-free period. We assumed no cocoon production during study because peak cocoon production occurs in early spring and late fall (Whalen et al., 1998). The secondary production through cocoons was calculated to be about 4–8% of total tissue production (Parmelee and Crossley, 1988; Curry et al., 1995). Therefore, the secondary production determined by the “deduction” approach could be underestimated by about 0.2–1.7 g AFDW m⁻² year⁻¹.

Secondary production has been measured for the naturally-occurring earthworm community in forests and agroecosystems of the UK and Ireland (Satchell, 1963; Boström, 1988; Curry et al., 1995), the USA (Parmelee and Crossley, 1988; Whalen and Parmelee, 2000), and in India (Senapati et al., 1991, 1992). Initially, comparison of secondary production estimates between these studies appears to be difficult due to differences in earthworm biomass, species, ecosystem and methods used. However, there is little difference in secondary production estimates for earthworm communities when the size-frequency and IGR methods are used (Whalen and Parmelee, 2000). Therefore, we assume that secondary production estimates from different methods can be compared. Furthermore, none of these studies specifically address the relationship between secondary production and the size of the earthworm community. This can be overcome by presenting secondary production vs mean earthworm biomass (Fig. 4).

The relationship between secondary production (P) and mean biomass (B) indicates the biomass turnover rate of populations, while the reciprocal of the P/B ratio indicates the time required to replace biomass in populations (Benke, 1984). The high correlation between secondary production and mean earthworm biomass across all studies suggests that population turnover of earthworm communities is related to population size and not necessarily climate or available resources. There was little difference between the average population turnover in 2004 (P/B = 2.3) and 2005 (P/B = 2.0). In a field study in Ohio, the biomass and secondary production of earthworm communities was greater in manure fertilized plots than inorganic fertilized plots, however no significant differences were found between the population turnover in both systems (P/B was 2.5 in manure plots vs 2.2 in inorganic plots) (Whalen and Parmelee, 2000). Similarly, the biomass and secondary production of earthworm communities was greater in a Lucerne field than in a meadow, yet no differences were found between the population turnover in both fields (P/B was 1.4 in Lucerne vs 1.2 in the meadow) (Boström, 1988).

4.2. Limitations and constraints of the “deduction” approach

The “deduction” approach is a reasonable method that can be used if the experimental design prevents repeated sampling or physical disturbance of the experimental plots. The major conditions for using the “deduction” approach are the use of manipulation experiments where individuals are added to a contained area (e.g., laboratory mesocosms or field enclosures), and the inclusion of a control treatment without any added individuals. In addition, accurate estimates of the duration of growth, growth rates, and mortality must be known for the organism in question. The response of earthworm activity to soil temperature and moisture is a more continuous function than the binary (positive or negative activity) system proposed in this method. We believe that this simplified binary system, although not ideal, allows us to make a good estimate of the duration of earthworm activity with a fraction of the computing resources needed to calculate descriptive continuous functions. The IGRs that we used in our study were approximately 0.0008–0.006 d⁻¹ for all species, which are comparable to IGRs calculated in other studies (Mazantsava, 1982; Booth et al., 2000; Wever et al., 2001). Furthermore, we assumed these growth rates were unaffected by population density since earthworm populations in all treatments were lower than the population threshold found to cause significant decreases in growth rates in a laboratory experiment using the same soils and earthworm species (Eriksen-Hamel and Whalen, 2007b). The mortality rates of 35–50% during the 17 week field experiment were based on field and laboratory core experiments (Al-Yousef and Shoreit, 1992; Subler et al., 1997; Boyer et al., 1999; Wever et al., 2001; Eriksen-Hamel and Whalen, 2006, 2007a). We acknowledge that a lack of life-history information for some organisms may limit the widespread use of the “deduction” approach; however, it may prove useful to researchers who conduct plot-level manipulation experiments to determine the roles of different species, functional groups and their abundance in terrestrial ecosystems (Blair et al., 1995).

The comparison between the measured and estimated biomass of earthworms added to enclosures (A) shows that our estimates of growth and mortality for A. caliginosa were more accurate than for L. terrestris. The large difference (13–28 g fw m⁻²) for L. terrestris is most likely due to overestimation of the survivorship of L. terrestris added to enclosures. This suggests that species-specific estimates of growth and mortality would improve the estimates obtained from the “deduction” approach.

A drawback of our experiment was that the earthworm manipulations were done during the summer (June) when soil temperatures were high (>20°C) and soil moisture were highly variable. Visual observations of casting activity show that earthworms were most active in the early spring (April and May) and autumn (late September and October) when soils were cooler.
(10–15 °C) and moister. Clearly we have missed peak periods of secondary production and therefore would expect greater biomass production if the experiment had included the entire frost-free period of our temperate agroecosystem. Nonetheless, the extrapolated estimates made by the “deduction” approach are within the range of secondary production estimates made by other direct methods (Fig. 4). Yet, this method still requires validation and future field work should compare this approach with other direct methods of assessing secondary production such as the IGR and size-frequency methods.

5. Conclusions

The “deduction” approach to estimating secondary production can be used in studies where frequent and repeated measurement of earthworm biomass is not possible. Researchers require accurate estimates of the duration of earthworm activity, field growth rates and mortality to calculate secondary production with the “deduction” approach and arrive at similar values as those obtained in studies where direct measurements are taken. Further validation of the “deduction” approach, compared to direct methods of calculating earthworm secondary production such as the size-frequency and instantaneous growth rate methods, is recommended. The “deduction” approach can be used broadly to determine secondary production for organisms in small-scale manipulation studies, where repeated removal of individuals or disturbance of the habitats could bias experimental results. This approach increases the set of tools available to ecologists to assess secondary production of organisms and may provide new insights into the energy flow and nutrient fluxes through communities.

Acknowledgements

We would like to thank Jonathan Perreault, Alicia Speratti and the many field assistants who helped with the installation of enclosures and collection of earthworms. Financial assistance was from Natural Sciences and Engineering Research Council (NSERC), and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

References

